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Abstract: Optima is a software package for modeling HIV
epidemics and interventions that we developed to address practical
policy and program problems encountered by funders, governments,
health planners, and program implementers. Optima’s key feature is
its ability to perform resource optimization to meet strategic HIV
objectives, including HIV-related financial commitment projections
and health economic assessments. Specifically, Optima allows users
to choose a set of objectives (such as minimizing new infections,
minimizing HIV-related deaths, and/or minimizing long-term finan-
cial commitments) and then determine the optimal resource alloca-
tion (and thus program coverage levels) for meeting those objectives.
These optimizations are based on the following: calibrations to
epidemiological data; assumptions about the costs of program
implementation and the corresponding coverage levels; and the
effects of these programs on clinical, behavioral, and other
epidemiological outcomes. Optima is flexible for which population
groups (specified by behavioral, epidemiological, and/or geograph-
ical factors) and which HIV programs are modeled, the amount of
input data used, and the types of outputs generated. Here, we
introduce this model and compare it with existing HIV models that
have been used previously to inform decisions about HIV program
funding and coverage targets. Optima has already been used in more
than 20 countries, and there is increasing demand from stakeholders
to have a tool that can perform evidence-based HIV epidemic

analyses, revise and prioritize national strategies based on available
resources, set program coverage targets, amend subnational program
implementation plans, and inform the investment strategies of
governments and their funding partners.
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INTRODUCTION
Despite decades of research and investment, HIV

remains a major contributor to the global burden of disease1:
each day, more than 7000 people become newly infected with
HIV.2 AIDS remains one of the leading causes of death for
adults globally and particularly in sub-Saharan Africa.3

Furthermore, development assistance for HIV has stabilized
and further increases of HIV financing are likely to be from
domestic sources.4,5 In this context of limited resources, it is
imperative to allocate available funds as efficiently as
possible. Especially as countries transition to domestically
funded programs, they can consider different implementation
approaches to reduce unit costs.

An allocatively efficient HIV response is one in which
the funding for HIV programs (and thus the coverage levels for
each program) is allocated in a way that will yield the greatest
impact in managing and reducing HIV disease burden over
a specified period. Quantifiable improvements in HIV alloca-
tive efficiency have long been sought.6 Although most
countries acknowledge the need for allocative efficiency,
investing in the right mix of programs for the right populations
in the right geographical areas is challenging because of both
political interests and the complexity of most HIV epidemics.
Consequently, many countries do not prioritize the most
efficacious interventions or scale them to appropriate coverage
levels.7 Recently, Anderson et al8 performed a detailed alloca-
tive efficiency analysis of the Kenyan HIV epidemic that
examined resource allocations across multiple populations,
interventions, and geographical locations. They found that 14%
more infections could be averted over the study period (2014–
2029) if resources were targeted to the most effective
interventions and the regions most in need.

To help national governments and other stakeholders
understand their HIV epidemics and allocate limited
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resources most efficiently, we developed Optima (formerly
known as Prevtool; eg,9,10), a software toolbox that models (1)
HIV transmission within and between population groups, (2)
disease progression, (3) the effects of HIV prevention and
treatment programs, and (4) the economic effects of policy
choices. We designed it to be flexible and comprehensive
enough to accommodate the regional, national, and epide-
miological diversity of HIV epidemics. Optima can be used
to (1) estimate epidemiological trends to produce long-term
forecasts, including for counterfactual scenarios; (2) calcu-
late program cost-effectiveness, returns on investment, and
other economic and HIV-related health outcomes; (3)
determine the allocation of resources and associated cover-
age levels that minimize any of several objectives, including
the number of new infections, HIV-related deaths and
disease burdens, current and future HIV-related costs, or
combinations thereof; and (4) determine the minimal re-
sources required to achieve specific targets regarding those
objectives. Innovatively, it performs optimization of
resource allocations over different periods using a formal
mathematical algorithm.

The Optima model includes sexual, injecting-related,
and vertical transmission of HIV and can incorporate an
arbitrarily large number of different population groups,
including key affected populations and age stratifications. In
Figure 1A, we show a typical selection of population groups
for a concentrated HIV epidemic. Here, 7 populations are
used, including males and females in the general population,
sex workers and their clients, males and females who inject
drugs, and men who have sex with men (MSM). Populations
can also be stratified by age, which is particularly important
for generalized epidemics. Optima allows flexible definitions
of population groups: for example, all or some MSM may
also engage in injecting behavior; alternatively, persons in the
general population of different ages may have different sexual
behavior and choose partners either younger or older than
themselves. The number of HIV programs and their defini-
tions are also not fixed: users can choose HIV programs for
specific populations or even to try out the impacts of new HIV
programs or new (lower cost) HIV service delivery models.
Optima can incorporate different HIV service delivery
models, including different unit cost estimates for given
program coverage levels; potential impacts of technical
(program) efficiency gains can thus be included in the
analyses.

We have so far completed allocative efficiency analyses
with Optima in more than 20 countries across Africa, Eastern
Europe, Latin America and the Caribbean, and Asia. To our
knowledge, Optima is the only HIV software package that
allows users to optimize funding to meet strategic HIV
program impacts without presupposing program coverage
levels. This article outlines the methodology underlying
Optima and compares Optima to other commonly used HIV
models, namely the Goals (Spectrum) Model,11,12 the AIDS
Epidemic Model (AEM),13 the Estimation and Projection
Package (EPP),14,15 and the Modes of Transmission (MOT)
model.16 To illustrate Optima’s use in the real world, we
present a case study of how it was applied in Sudan, a low-
income country with a low-level HIV epidemic.

METHODS
This section provides a qualitative description of the

methods used in Optima; further details are provided in the
Supplemental Digital Content (http://links.lww.com/QAI/A662).

HIV Epidemic Model
Optima is based on a dynamic, population-based HIV

model; Figure 1B shows the disease progression implemented
in the model. Optima tracks the entire population of people
living with HIV (PLHIV) across 5 stages of CD4 count.
These CD4 count stages are aligned to the progression of
WHO treatment guidelines, namely, acute HIV infection, and
CD4 counts of .500, 350–500, 200–350, 50–200, and ,50
cells per microliter. Key aspects of the ART service delivery
cascade are included: from infection to diagnosis, ART
initiation on first-line therapy, treatment failure, subsequent
lines of therapy, and HIV/AIDS-related or other death. The
primary purpose of HIV testing is to identify those who are
HIV positive. With the new UNAIDS global targets of 90%
of PLHIV identified by 2020, 90% of them on treatment, and
90% of these virally suppressed,12 the structure of the disease
progression model in Optima is designed to help countries
measure and achieve this goal and optimize resource
allocations accordingly.

The model uses a linked system of ordinary differential
equations to track the movement of PLHIV between HIV health
states; the full set of equations is provided in the Supplemental
Digital Content (http://links.lww.com/QAI/A662). The overall
population is partitioned in 2 ways: by population group and by
HIV health state. Individuals are assigned to a given population
group based on their dominant risk. However, to capture
important cross-modal types of transmission, relevant behav-
ioral parameters can be set to nonzero values (eg, males who
inject drugs may engage in commercial sex; some MSM may
have female sexual partners).

HIV infections occur through the interaction between
different populations by regular, casual, or commercial
(including transactional) sexual partnerships, through sharing
of injecting equipment, or through mother-to-child trans-
mission. The force-of-infection is the rate at which uninfected
individuals become infected, and it depends on the number
and type of risk events to which individuals are exposed in
a given period (either within their population groups or
through interaction with other population groups) and the
infection probability of each event. Mathematically, the force-
of-infection has the general form:

l ¼ 12 ð12bÞn;
where l is the force-of-infection, b is the transmission
probability of each event, and n is the effective number of
at-risk events (ie, n gives the average number of interaction
events with HIV-infected people where HIV transmission
may occur). The value of the transmission probability b
varies across CD4 count compartments (indirectly reflecting
the high viral load at early and late stages of infection), differs
for different modes of transmission (intravenous drug injec-
tion with a contaminated needle–syringe, penile–vaginal or
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penile–anal intercourse, and mother-to-child), and may be
reduced by behavioral interventions (eg, condom use),17,18

biological interventions (eg, male circumcision), or ART.19,20

There is one force-of-infection term for each type of
interaction [eg, casual sexual relationships between male
sex workers and female sex workers (FSW)]; the force-of-
infection for a given population will be the sum of all
interaction types.

For sexual transmission, the force-of-infection is deter-
mined by:

• The HIV prevalence (weighted by viral load) in partner
populations;

• The average number of casual, regular, and commercial
homosexual and heterosexual acts per person per year;

• The proportion of these acts in which condoms are used;
• The proportion of men who are circumcised;
• The prevalence of sexually transmissible infections (which
can increase HIV transmission probability);

• The proportion of acts that are covered by pre-exposure
prophylaxis and postexposure prophylaxis;

• The proportion of partners on ART; and
• The efficacies of condoms, male circumcision, postexpo-
sure prophylaxis, pre-exposure prophylaxis, and ART at
preventing HIV transmission.

For injecting-related transmission, the force-of-
infection is determined by:

• The HIV prevalence (weighted by viral load) in popula-
tions of people who use a syringe and then share it;

• The number of injections per person per year;
• The proportion of injections that use shared equipment;
• The fraction of people who inject drugs on opioid
substitution therapy and its efficacy in reducing injecting
behavior.

For mother-to-child transmission, the number of
infections is determined by:

FIGURE 1. A, Example population groups and HIV transmission-related interactions in Optima. B, Schematic diagram of the
health state structure of the model. Each compartment represents a single population group with the specified health state while
each arrow represents the movement of individuals between health states. All compartments except for “susceptible” represent
individuals living with HIV. Death includes all causes of death.
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• The birth rate among women living with HIV;
• The proportion of women with HIV who breastfeed;
• The probability of perinatal HIV transmission in the
absence of intervention; and

• The proportion of women receiving prevention of mother-
to-child transmission (PMTCT), including ART.

In addition to the force-of-infection rate, which deter-
mines the number of individuals who become infected with
HIV per year, there are 7 other ways individuals may change
health states. First, individuals may die, either because of an
average background death rate for that population (which is
greater for older populations or for people who inject drugs)

or because of HIV/AIDS (which depends on CD4 count).
Second, in the absence of treatment, individuals progress
from higher to lower CD4 counts. Third, individuals can
move from undiagnosed to diagnosed states based on their
HIV testing rate, which depends on CD4 count (eg, people
with AIDS symptoms or primary HIV infection may have
a higher testing rate) and population type (eg, FSW may test
more frequently than females in the general population).
Fourth, diagnosed individuals may commence ART, at a rate
depending on CD4 count. Fifth, individuals may experience

treatment failure because of lack of adherence to therapy or
development of drug resistance. Sixth, people may initiate
second and subsequent lines of treatment from treatment
failure. Finally, while on successful first- or second-line
treatment (ie, effective viral suppressive therapy), individuals
may progress from lower to higher CD4 counts.

The change in the number of people in each compart-
ment is determined by the sum over the relevant rates
described above, multiplied by the population size of the
compartments on which they act. For example, the change in
the number of undiagnosed HIV-positive FSW with a CD4
count between 200 and 350 cells per microliter is:

where UFSW2002350 is the current number of undiagnosed HIV-
positive FSW with a CD4 count between 200 and 350 cells
per microliter, UFSW3502500 is the same population but with
higher CD4 count (350–500 cells/mL), t is the disease
progression rate for the given CD4 count (where 1/t is the
average time to lose 150 CD4 cells/mL), m is the death rate,
and h is the HIV testing rate. (Note: this example does not
consider movement between populations, such as FSW
returning to the general female population and vice versa—
something which is included in Optima.) Each compartment

TABLE 1. Input Parameters of the Model

Biological Parameters Behavioral Parameters Epidemiological/Other Parameters

Population parameters Background death rate Population sizes (T, P)

HIV-related parameters Sexual HIV transmissibilities* (H)

STI-related transmissibility increase* Number of sexual partners*
(T, P, S)

Condom efficacy* Number of acts per partner* (S) HIV prevalence (T, P)

Circumcision efficacy* Condom usage probability* (T, P) STI prevalence (T, P)

HIV health state progression rates (H) Circumcision probability* (T)

HIV-related death rates (H)

MTCT parameters Mother-to-child transmission probability* Birth rate*

PMTCT access rate* (T)

Injection-related
parameters

Injecting HIV transmissibility* Number of injections* (T)

Syringe cleaning efficacy* Syringe sharing probability* (T)

Drug-related death rate Syringe cleaning probability*

Methadone treatment probability (T)

Treatment parameters ART efficacy in reducing infectiousness* HIV testing rates (T, P, H) Number of people on ART (T)

ART failure rates

Economic parameters Health utilities Costs of all prevention, care and treatment
programs, enablers and management (T, I)

Cost-outcome curves (T, I)

Discounting and inflation rates (T)

Health care costs

*Parameter is used to calculate the force-of-infection.
H, parameter depends on health state; I, parameter depends on intervention type; P, parameter value depends on population group; S, parameter depends on sexual partnership type;

STI, sexually transmissible infection; T, parameter value changes over time.

dUFSW2002 350

dt
¼ UFSW3502 500t3502 5002UFSW2002 350

�
m2002 350 þ t2002 350 þ hFSW3502 500

�
;
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(Fig. 1B, boxes) corresponds to a single differential equation
in the model, and each rate (Fig. 1B, arrows) corresponds to
a single term in that equation.

Table 1 lists the parameters used in Optima; most of
these are for calculating the force-of-infection. We interpret
empirical estimates for model parameter values in Bayesian
terms as prior distributions. The model must then be
calibrated, which is the process of finding posterior distribu-
tions of the model parameter values such that the model
generates accurate estimates of HIV prevalence, the number
of people on treatment, and any other epidemiological data
that are available (eg, HIV-related deaths). The calibration
can be performed automatically, manually, or a combination
of both. This process of model calibration and validation
should normally be performed in consultation with govern-
ments in the countries in which the model is being applied.

HIV Resource Optimization and Program
Coverage Targets

A novel component of Optima is its ability to calculate
allocations of resources that optimally address one or more
HIV-related objectives (eg, impact-level targets in a country’s
HIV national strategic plan). Because Optima also calculates the
coverage levels required to achieve these targets, it can be used
to inform HIV strategic planning and the determination of
program coverage levels. The key assumptions of resource
optimization are the relationships between (1) the cost of HIV
programs for specific target populations, (2) the resulting
coverage levels of targeted populations with these HIV
programs, and (3) how these coverage levels of HIV programs
for targeted populations influence behavioral and clinical
outcomes. Such relationships are required to understand how
incremental changes in spending (marginal costs) affect HIV
epidemics. A traditional approach is to apply unit cost values to
inform a linear relationship between money spent and coverage
attained. This is a reasonable assumption for programs like an
established ART program that no longer incurs start-up or
initiation costs, but less appropriate for condom promotion and
behavior change communication programs. Most HIV pro-
grams typically have initial setup costs, followed by a more
effective scale-up with increased funding. However, there are
saturation effects for very high coverage levels, since these
require increased incremental costs due to demand generation
and related activities for the most difficult-to-reach groups.

Optima uses a logistic function fitted to available input
data to model cost–coverage curves; Figure 2 shows an
example. (Coverage–outcome relationships are assumed to be
linear here for illustration purposes.) Logistic functions can
incorporate initial start-up costs and allow changes in
behavior to saturate at high spending levels, thus better
reflecting program reality. The logistic function has the form:

LðxÞ ¼ Aþ B2A

1þ e2 ðx2CÞ=D;

where L(x) relates spending to coverage, x is the amount of
funding for the program, A is the lower asymptote value
(adjusted to match the value of L when there is no spending

on a program), B is the upper asymptote value (for very high
spending), C is the midpoint, and D is the steepness of the
transition from A to B. For our fits, we typically choose
saturation values of the coverage to match behavioral data in
countries with heavily funded HIV responses. Program
coverage for zero spending is assumed to be zero; behavioral
outcomes for zero coverage are inferred using data from early
on in the epidemic or just before significant investment in
HIV programs. Practically, we also discuss the zero and high
spending cases with local experts who can advise on private
sector HIV service delivery outside the governments’ expen-
diture tracking systems.

For each HIV program, we derive one set of logistic
curves that relate funding to program coverage levels and
another set of curves (generally linear relationships) between
coverage levels and clinical or behavioral outcomes (ie, the
impacts that HIV strategies aim to achieve). In future, Optima
will include a default set of these cost-coverage-outcome curves,
based on all available international evidence. Outcomes expected
from changes in program funding are assumed by interpolating
and extrapolating available data using a fitted logistic curve. A
limitation of this approach is that all changes in behavior are
assumed to be because of changes in program funding.

Optima can be used to minimize either (1) a given
outcome [eg, number of infections, number of disability-
adjusted life years (DALYs), number of HIV-related deaths,
or future HIV-related costs] given a fixed total budget over
a determined program period, or (2) the amount of funding
required to meet a particular epidemiological goal (eg, reducing
HIV incidence by 50%). Optima can also determine the amount
of money required to simultaneously meet multiple goals (eg,
all impact-level targets in an HIV national strategic framework)
or the optimal allocation of a fixed amount of resources that will
simultaneously get as close as possible to achieving one or
multiple target objectives. Optima can also be used to help
decide in which geographic areas to implement programs for
which target populations or how to most effectively reinvest the
savings from technical efficiency gains. Constraints may be
placed on the optimization; for example, the number of people
on ART may not be allowed to decrease, or programs cannot
increase or decrease from a baseline level by more than
a defined percentage each year to account for political or other
constraints.

To perform the optimization, Optima uses a global
parameter search algorithm called Bayesian adaptive locally
linear stochastic descent (BALLSD).21 BALLSD is similar to
simulated annealing in that it makes stochastic downhill steps
in parameter space from an initial starting point. However,
unlike simulated annealing, BALLSD chooses future step
sizes and directions based on the outcome of previous steps.
For certain classes of optimization problems, we have shown
that BALLSD can determine optimal solutions with fewer
function evaluations than traditional optimization methods,
including gradient descent and simulated annealing.21

Uncertainty Analyses
Optima uses a Markov chain Monte Carlo (MCMC)

algorithm22–24 for performing automatic calibration and for
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FIGURE 2. A, Example cost–coverage curve, showing
the relationship between spending on a program and
the associated coverage attained among the target
population, including technical efficiency gains. B,
Example coverage–outcome curve, showing the
relationship between coverage of a minimum service
package to a targeted population (eg, outreach and
condom distribution with minimum service package
to FSW) and the resultant outcome (eg, percentage of
FSW consistently using condoms with their commer-
cial partners). C, Example of uncertainty incorporated
in the cost–coverage curves used in Optima.
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computing uncertainties in the model fit to epidemiological
data. With this algorithm, the model is run many (typically
1000–10,000) times to generate a range of epidemic projec-
tions; their differences represent uncertainty in the expected
epidemiological trajectories.

The most important assumptions in the optimization
analysis are associated with the cost–coverage and cover-
age–outcome curves. To incorporate uncertainty in these
curves, users define upper and lower limits for both
coverage and behavior for no spending and for very high
spending. All available historical spending data and
achieved outcomes of spending, data from comparable
settings, experience, and extensive discussion with stake-
holders in the country of application can be used to inform
these ranges. All logistic curves within these ranges are
then allowable (Fig. 2C) and are incorporated into uncer-
tainty analyses of Optima. These cost–coverage and
coverage–outcome curves are thus reconciled with the
epidemiological, behavioral, and biological data in a Bayes-
ian optimal way, thereby allowing the calculation of unified
uncertainty estimates.

Time-Varying Optimization and Periods
Optima can also optimize program funding over time.

The funding to each program is able to vary either (1) by
a predetermined year-by-year total budget or (2) such that
the total pool of funding is distributed across time in an
optimal manner for the best overall outcome at the end of
the analysis period. The optimal allocation of resources to
each program may change over time in either situation.
Time-varying program allocation is governed by the
equation:

AðtÞ ¼ best
2

;

where A is the allocation of program funding as a function of
time t, b determines the overall budget for a given program,
and s is a shape parameter such that program funding is
constant if s = 0, increases over time if s . 0, and decreases if
s , 0. The time points t are normalized such that the analysis
period is mapped onto the closed interval [0, 1].

Periods are an important consideration in any resource
allocation analysis. Some programs maybe effective over the
long term but fail to receive funding if optimizations only
consider the short term, because of the time required to reach
sufficient coverage and for effectiveness to become apparent
(eg, circumcision of male youth before sexual debut).
Consequently, Optima allows 2 time frames to be specified:
the period over which the funding is to be optimized and the
period over which the impacts of said funding are to be
optimized. For example, Optima can be used to calculate the
optimal budget allocation for a 4-year national strategic plan
in minimizing infections over the next 30 years. Of course,
the 2 periods may align: for example, Optima can optimize
funding over the next 10 years with respect to minimizing
DALYs over the same period.1 This flexibility in periods
allows users to explore short- and long-term impacts of
different investment strategies.

Technical Efficiency Gains
Technical (program) efficiency focuses on minimizing

unit costs of overall service delivery, subject to community-
level factors, the policy environment, and considerations
regarding implementation quality. Equally important are
administrative rules and regulations, which can hinder timely
provision of resources from central to community levels.
Understanding how management, financial analysis, and
institutional efficiencies affect delivery costs can result in
changes to service delivery models. These differences
ultimately change the overall cost required to reach a target
population with services of a given quality. Accordingly,
program efficiency data and/or assumptions can be incorpo-
rated within Optima epidemic projections or allocative
efficiency analyses by modifying the cost–coverage logistic
curves; the initial start-up costs and/or slope of the curves can
be adjusted to account for different program efficiency
options (Fig. 2). Optima can therefore show how to best
allocate the savings incurred from less expensive service
delivery to further maximize the achievement of HIV pro-
gram impact targets.

Future Financial Commitments
Optima calculates the costs incurred per HIV infection,

including costs for first-line and subsequent lines of treatment,
PMTCT, treatment of opportunistic infections, and care and
treatment related to other HIV-related morbidities. It can also
estimate the future financial liability to governments for the
care and treatment of people currently living with HIV, and
from people who are projected to become infected in the future.

From a public debt perspective, expressing this total
cost as a percentage of annual GDP, over time, shows
a government the total long-term financial implications of
its HIV strategy and commitments. This is essential when (1)
projecting long-term financial costs of HIV, (2) considering
the financial sustainability and fiscal space available for HIV
programs, and (3) determining whether resources may
become available for non–HIV-related programs. HIV pro-
gram financial sustainability is achieved when a country can
reliably mobilize domestic and external resources to achieve
the current and future coverage of HIV services necessary to
achieve that country’s HIV strategy goals. In the context of
a rapidly changing AIDS funding landscape, it is important
for governments to understand the long-term financial
burdens of their HIV epidemics and consider how their
HIV programs could be financed and sustained if donor
funding were scaled down or became unavailable.

RESULTS
Here, we present a case study summarizing the findings

of an allocative efficiency analysis of Sudan’s national HIV
epidemic and response. The analysis was conducted in
support of the government’s preparation of a concept note
for submission to the Global Fund, the largest funding body
in the nation’s HIV response. Two key policy questions were
formulated in consultation with the Sudanese National
AIDS Program:
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• Finding the optimal allocation of HIV funds to minimize
either cumulative HIV incidence by 2020 or cumulative
HIV-related DALYs by 2020; and

• Determining the HIV funding required to achieve impact
targets that were either moderate (25% reduction in HIV
incidence and deaths by 2020 compared to 2010 levels) or
ambitious (50% reduction in HIV incidence and deaths by
2020 compared to 2010 levels).

Data to inform the modeling were gathered from
a comprehensive literature review and validated in consulta-
tion with key in-country and donor stakeholders. Ten
populations were defined for inclusion in the model: FSW;
their clients (SWC); MSM; children; and youth (aged 15–24
years), adults (aged 25–49 years), and older people (aged
older than 50 years), each disaggregated by sex. Seven core
HIV programs were identified for optimization: programs for
FSW, programs for MSM, programs for SWC, general
population condom programs, HIV testing and counseling
for the general population, ART, and PMTCT. Expenditure
from the National AIDS Spending Assessment for 2013 was
used as a baseline; total spending was 12.2 million USD, with
spending on these 7 programs of 6.4 million USD.

The results addressing the first key policy question
established that by optimally reallocating the same 6.4 million
USD in programmatic spending as in 2013, Sudan could avert
an additional 19,000 HIV infections (or 36% of cumulative
new HIV infections) between 2014 and 2020. The simu-
lations showed that to minimize incidence or DALYs, scaling
up the ART program is highest priority, followed by targeted
primary prevention programs for FSW, their clients, and
MSM, with some adjustments to the allocation given to each
of these programs depending on the choice of strategic
objective (Fig. 3). Should more programmatic funding
become available—for example, by mobilizing additional

funds or reducing management costs—HIV incidence (or
DALYs) could be reduced further (Fig. 4).

In answer to the second key policy question, the
modeling results showed that the minimum annual pro-
grammatic spending required to achieve the moderate impact
targets outlined in the National Strategic Plan was 8.1 million
USD. Achieving the more ambitious targets of a 50%
reduction in HIV incidence and AIDS-related deaths by
2020 would require an estimated 34 million USD annually
for programs—over 5 times the spend of USD 6.4 million in
2013. The cost of reaching HIV incidence reduction targets is
estimated to be lower than cost of reaching HIV mortality
targets, which require extensive coverage of HIV testing
programs in the general population.

A key finding of all the analyses conducted was that
targeting programmatic resources almost exclusively to ART
and prevention programs for FSW, SWC, and MSM has
downstream effects on all population groups and leads to HIV
incidence reductions in all populations over the medium term
and at lower cost than targeting the general population
directly. This is as expected in a low-level HIV epidemic,
where transmission in the general population is largely fueled
by new infections occurring in the key populations.

The allocative efficiency study carried out in Sudan
broadly highlighted some of Optima’s ability to provide
policy-relevant information for high-level decision making
and planning. Based on these results, the Sudanese govern-
ment shifted their program priorities and budgets in their
request for funding from the Global Fund.

DISCUSSION
Optima has been designed to answer the key questions

that arise as national governments and other HIV stakeholders

FIGURE 3. Current (2013) versus optimal alloca-
tions of HIV resources in Sudan for 2 different
optimization objectives.
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decide how to fund their HIV responses and make choices
regarding allocations and target program coverage levels.
Specifically, it allows them to:

• Understand what population groups and behaviors are
chiefly responsible for new HIV infections in the relevant
settings, and how these change over time;

• Project current trends and understand what the likely
trajectory of their HIV epidemics are if current conditions
continue;

• Explore the epidemiological, health, and economic benefits
that past investments in packages of HIV programs have
likely had, which maybe used as either an evaluation or an
advocacy tool;

• Predict the outcomes of different possible future funding
scenarios, such as scenarios that prioritize treatment over
prevention or vice versa, or certain subpopulations or
geographical regions over others;

• Formally and quantitatively determine the funding alloca-
tion given the currently available budget that minimizes
specific epidemiological or economic indicators (eg, new
HIV infections, DALYs, HIV-related deaths, or long-term
HIV-related health care costs);

• Estimate the minimum resources and coverage targets
required to meet specific epidemiological, economic, and
program impact targets, including multiple targets (eg, 90%
reductions in both incidence and DALYs by 2030);

• Estimate the impacts and marginal effects of new programs
being introduced (provided that basic information about the
program’s efficacy at the individual level is known);

• Estimate where to best allocate savings from technical
efficiency gains;

• Understand how optimal responses may change over time
by front-loading some programs and then reducing them
while scaling up others;

• Explore geospatial optimized allocations and priority pro-
gram coverage;

• Conduct analyses over different periods to explore the
short- and long-term impacts of certain investment strate-
gies over a specific period (such as over a national
strategy); and

• Calculate the long-term financial commitment caused by
one new HIV infection, as well as annual and total future
costs for care and treatment of PLHIV.

A number of alternative software packages for
modeling HIV epidemics and HIV program impacts and
costs already exist. Several of the models that have
historically been used widely in advising governments on
the resource needs, expected impacts, and progression of
HIV epidemics are compared in Table 2, including the
AEM, the EPP, the Goals Model, and the MOT model. Of
these, only AEM and Goals are full process models that
track epidemics over time, relate behavioral parameters to
coverage, prevalence and incidence, and produce long-term
forecasts. Although AEM and Optima share a similar
fundamental structure, AEM supports only a limited num-
ber of population groups; for example, transgender pop-
ulations are important contributors to several national HIV
epidemics (eg, Indonesia), but there has historically been no
scope for including this population group in AEM. AEM
currently only has a basic costing component, which does
not allow complete cost-effectiveness analyses nor resource
estimation or allocation studies to be conducted. AEM has

TABLE 2. Comparison of HIV Epidemic Model Characteristics

Model Approach Populations Purpose Inputs Outputs

EPP Fits 4 parameters to
a simple model; written
in Java

MSM, PWID, FSW, male
SW, SWC, and low-risk
groups (separated into
urban and rural)

Estimate and project adult
HIV prevalence and
incidence

Size of subpopulations;
HIV prevalence among
subpopulations;
treatment data

Current number of HIV
infections; HIV infection
trends (5-yr projections)

AEM Semiempirical process
model; written in Java

PWID, direct FSW,
indirect FSW, MSW,
SWC, and MSM

Provide a policy and
planning tool for
national governments

Size of subpopulations;
HIV and STI prevalence;
risk behavior data;
average duration in each
population

Trends of HIV infections;
impacts on AIDS cases,
ART needs, deaths, etc.
(long-term projections)

MOT Risk equations; written in
Excel

PWID, FSW, MSM, and
low-risk groups
(separated into males
and females)

Calculate expected number
of infections over
coming year

HIV prevalence; number of
individuals with
particular exposure; rates
of exposure

Incidence (HIV
acquisition) per risk
group

Goals/
Spectrum

Compartmental rate-based
model; written in Delphi

MSM and high-, medium-,
and low-risk groups

Estimate costs and impact
of different interventions

Sexual behavior by risk
group; demographic
data; base year human
capacity

Costs; HIV prevalence and
incidence (5-yr
projections)

Optima Compartmental rate-based
model; versions
available for MATLAB
and Python

Flexible; unlimited but
usually approximately
8–20 groups, including
key affected and general
populations and different
age groups

Analyze and project HIV
epidemics; determine
optimal resource
allocations

Size of population groups;
HIV and STI prevalence;
risk behavior data (eg,
condom use); biological
constants (eg,
background death rates)

HIV prevalence and
incidence trends; health
care costs; deaths;
optimal resource
allocations

PWID, people who inject drugs; STI, sexually transmitted infection; SW, sex workers; SWC, sex worker clients.
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been used in a number of epidemic settings, particularly
in Asia.13,25

EPP and Goals are both components of the Spectrum
software package.11 In contrast to AEM and Optima, EPP
does not model the actual epidemic dynamics; instead, it is
a phenomenological model that calibrates to past epidemic
trends and projects them into the future. It has been used
extensively to predict trends in African epidemics and is used
for HIV estimates in many countries around the world,
including by UNAIDS.2,11,14,15

The Goals model is closer to Optima in its structure,
data requirements, and purpose: both models require detailed
demographic, epidemiological, behavioral, and clinical data,
and both have been used as part of HIV strategic planning.
The Goals model has been used by countries and UNAIDS in
resource needs estimates and epidemic projections. Like
Optima, the key inputs of the Goals model are used to
determine the force-of-infection for each population. How-
ever, in the Goals model, both the population groups

(including people who inject drugs, MSM, and low-,
medium-, and high-risk individuals) and the types of HIV
programs that can be modeled (including condom promotion
programs, workplace programs, male circumcision, ART,
HIV testing and counseling, and PMTCT) are fixed. In
contrast, Optima allows HIV programs to be defined to target
specific subpopulations within specific geographic areas, with
different service delivery models, and with user-specified
efficacies. Another difference between the Goals model and
Optima is that the Goals model does not include undiagnosed
PLHIV, so HIV testing is instead assigned an HIV prevention
benefit (ie, HIV testing directly reduces HIV incidence
because of behavioral changes by those who either test
positive or negative).

MOT contains a detailed process model of HIV
acquisition, requiring similar data inputs as are used in
Optima to calculate the force-of-infection.16 However, unlike
Optima, AEM, and Goals, MOT’s sole output is a prediction
of the acquisition of new infections in each population group

FIGURE 4. A, Resource allocations optimized
to minimize HIV incidence by 2020 at different
budget levels for Sudan. Prevention packages for
key populations include outreach, condoms, and
HTC but do not include ART (which is shown
separately). B, The model-estimated number of
cumulative infections resulting from the alloca-
tions shown in Figure 4A.
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in the current year—which is one of the standard outputs
produced by AEM, the Goals model, and Optima. Recently,
concerns have been raised regarding the validity of the
epidemic drivers identified by MOT.26

Thus, although each of these previously used packages
has a potentially useful role in informing policymakers of
certain aspects of an HIV epidemic, none of them allow
a unified approach across (1) different types of epidemics (eg,
concentrated vs. generalized), (2) different types of analysis
(eg, cost-effectiveness of past investments and projections of
future epidemic trends at different funding levels and for
different HIV program impact objectives), (3) different
population groups (eg, people who inject drugs, transgender
individuals, migrant workers, and persons of different age
groups), and (4) different HIV program impact targets at
different funding levels.

Optima analyses translate inherent uncertainty in data
and assumptions into uncertainty in outputs. The analyses also
allow users to incorporate real-world constraints associated
with all programs in the optimization analyses (eg, no one who
starts ART is to stop ART; programs cannot be immediately
defunded but may only have reduced funding up to a certain
percentage each year to enable a realistic transition). Graphical,
tabular, and other numeric outputs provide stakeholders with
clear qualitative and quantitative conclusions to assist in HIV
policy and programming decision making.

The main limitation of Optima is its requirement for
data. Optima’s strength is that it can use a far larger quantity
of data than most other HIV models; however, this advantage
wanes in the absence of good data availability. In general, the
model used for a given analysis should be commensurate with
the amount of data available: if ample data are available,
a complex model such as Optima is likely to provide
informative results; conversely, if data are strictly limited,
then a simple model with few parameters (such as EPP) may
give more robust and meaningful results on epidemic
trajectories. However, the flexible nature of Optima means
that by reducing the number of population groups and the
number of modes of transmission, its data requirements can
be reduced to be in line with those of other simpler models.
Similarly, the large number of parameters supported by
Optima risks overparameterization and overfitting. To cir-
cumvent this, most parameters in the model are set to values
determined by the best available data; only a relatively small
number of parameters (relating to the initial HIV prevalence,
force-of-infection, and testing and treatment rates) are varied
during calibration.

A second limitation of Optima is its reliance on
assumed cost–coverage and coverage–outcome curves to
determine the optimal allocations. Actual data from the field,
along with input from country experts, can be used to inform
the parameters of these curves and their uncertainty.
Typically, the data available to constrain these are limited,
and thus, assumptions must be made to fill these data gaps,
particularly regarding expected behaviors for the extremes
of zero and saturation funding. Because the optimal
allocation is determined by the slopes of the cost–
coverage–outcome relationships, the results are especially
sensitive to uncertainty in these curves.

Third, because Optima is a population- and rate-based
model, it relies on average quantities rather than full
distributions. Thus, although it is possible to introduce
heterogeneity in populations (eg, population groups can be
further subdivided into low- and high-risk subgroups),
continuous distributions of risk behaviors are not modeled.
In addition, rate-based models have inherent limitations in
modeling certain kinds of processes. For example, while
a death rate maybe chosen that results in the correct mean life
expectancy, a rate-based process will produces an exponential
distribution of life expectancies, which is only a rough approx-
imation of the true distribution, which is more Gaussian.

To allow policymakers to access Optima’s functionality
without requiring detailed knowledge of computer program-
ming or mathematical modeling, we have developed
a Python-based version of the software, along with a user-
friendly JavaScript-based graphical interface (available at
www.optimamodel.com). This version uses Amazon Web
Services’ Elastic Compute Cloud27,28 to implement paralleli-
zation, allowing the computationally intensive tasks of
calibration, uncertainty analysis, and optimization to be
performed with minimal delay to the user. Users are able to
select and modify population groups and HIV programs to
suit their needs, as well as define objectives and constraints
relevant to their particular setting.

Optima has already been used in numerous countries to
inform the development of HIV investment cases and concept
notes (as are now required to apply for Global Fund grants),
contribute to the development of National Strategic Plans and
Operational Plans to help allocate domestic and international
funds, and act an advocacy tool to demonstrate the benefits of
past HIV investments and justify future resource allocations
to HIV. In conclusion, we hope that Optima proves to be
a useful tool to help policymakers understand their countries’
HIV epidemics and to allocate resources efficiently for
maximal impact.
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